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Issues in Information Hiding Transform 
Techniques* 

1    INTRODUCTION 

Information hiding has emerged as an exciting and important research field. In- 
formation hiding not only complements the traditional obfuscation techniques, 
(e.g., [17]) but also brings to it new prospects. By its definition, information hid- 
ing hides a message (the embedded message) under a cover message to yield the 
s£e<?o-message. Much of the research in information hiding has focused upon 
steganography and watermarking. Steganography refers to methods that are 
used to transmit the embedded message without an observer being aware that 
there is an embedded message in the cover message. The embedded message may 
be fragile - it is easily broken in the face of attacks. With respect to steganog- 
raphy, robustness is not a critical property. Transparency is! The similar field 
of watermarking is to embed a "watermark" for the purpose of authentication, 
a crucial step for copyright protection and tamper proofing. The embedded 
watermark may not be transparent in the sense that it is perceivable, but it 
must not be easily removed from the stego message. The embedded watermark 
is usually required to be semi-fragile (i.e., destroyed if changes exceed a limit) 
or robust. Johnson et. al. [8] nicely state (their concern is images) that "Tradi- 
tional steganography conceals information; watermarks extend information and 
may be considered attributes of the cover image." 

In our present experiments, digital images are used as the cover message 
in which we embed the hidden information. Two common modes of embed- 
ding are spatial embedding and transform embedding. Spatial embedding 
inserts messages into image pixels, usually in the least significant bits1 (LSB)2 

[10]. LSB embedding has the merit of simplicity, but suffers from the lack of 
robustness. LSB embedding is susceptible to image-processing type of attacks. 
Error-correction coding has been proposed for enhancing the robustness, but 
its effectiveness is limited to low levels of noise [9] [13]. If spatial embedding in- 
volves higher order bits, one runs the very real risk of the steganography being 

'Research supported by the Office of Naval Research. 
1 Early  experiments of embedding messages  under the  least  significant  bits in  audio 

steganography were performed by Kang [9]. 
abbreviations may be singular or plural. 
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detected, and for watermarking the concern is that the cover image might be 
degraded and/or the watermark may be easy to remove. In order to achieve 
robust hiding, researchers have invoked transform domain techniques (e.g., fre- 
quency space) [5]. Transform embedding embeds a message by modifying 
(selected) transform (e.g., frequency) coefficients of the cover message. Ideally, 
transform embedding has the effect in the spatial domain of apportioning the 
hidden information through different order bits in a manner that is robust, but 
yet hard to detect. Of course one must then be concerned with the detectability 
in the frequency domain, but at least the human visual system (HVS) may be 
fooled. Therefore, hiding in the frequency domain presents its own challenges 
(e.g., [5][7]). Since an attack, such as image processing, usually affects a certain 
band of transform coefficients, the remaining coefficients would remain largely 
intact. Hence, transform embedding is in general more robust than spatial em- 
bedding. 

Extraction of the embedded message is often carried out by comparing the 
stego-message with the cover message. This is practical for watermarking, but 
one may not have the original cover message when dealing with a stego-message. 
Without a cover image, embedding may involve a stego-key. The stego-key 
would serve a similar purpose as the cover image in that it (hopefully) enables 
us to determine the hidden message. Also note that for message authentica- 
tion, it may be sufficient only to prove the existence of the embedded message 
perhaps via a similarity measure (e.g., [5]). Also, In the absence of the original 
image, statistical methods based on detection probability have been proposed 
for extraction (e.g., [20]). 

2    REVIEW 

In this section, we will briefly review the three most commonly used transform 
techniques: DFT, DCT and Wavelet. 

2.1    Discrete Fourier Transform: DFT 

The DFT has its root in the Fourier series analysis. Recall that a time domain 
periodic function f(t) can be decomposed into a series of sine (or cosine) wave 
functions, where each has frequency that is a multiple of a constant (i.e., the 1st 
harmonic u>o)-3 The goal is finding the coefficient for each wave function. For 
the purpose of frequency domain analysis, the exponential Fourier series is used 
in places for sine or cosine series and its coefficient of the nth harmonic (i.e., 
nw0) is given by Fn = (1/P) J0 f(t) exp-"1"'0' dt, where L denotes the complex 
number ^/—\, P denotes the duration of a period and w0 is 2-K/P. 

Consider the one-dimension discrete case in which N samples /(0), f(T),- ■ ■, 
/(AT) are taken at the sampling rate T. The sampled sequence may not have 
a period, but in the DFT it is assumed that these N samples constitute a 

3The constant UIQ is needed to assure the orthogonality between two wave functions. 



period. As a result, the period of the sampled sequence becomes NT and 
correspondingly, the constant frequency wn is 2-K/NT. The discrete Fourier 
transform is obtained by substituting respectively w0 with 2-K/NT, t with kT, 
dt with T, P with NT and n with u in the exponential Fourier series, i.e., 

1 N"1 

F(u)  =   — ^/(fcTJexp-'2**1^ 0<u<AT 
ifc=0 

where u is the index in the frequency domain. Here, the total number of fre- 
quency components is also N. The lowest frequency component of the DFT 
occurs at u = 0 and is 0. The highest frequency component can be determined 
from the Nyquist sampling theorem and its value is ^ Hz (or cycles/second). 
The index u which corresponds to the highest frequency component is y, right 
at the middle of the N frequency indices.4 For the digital pictorial domain, 
the sampling interval T is measured in terms of, not time, but pixels between 
consecutive samplings. In the case of one pixel per sampling, i.e., T = 1, the 
highest frequency component becomes | cycles/pixel.5 The highest frequency 
(or, the bandwidth) has been used in computing the lower bound of the hiding 
capacity of a stego image, where the lower bound is computed from the Shan- 
non's capacity measure of an additive white Gaussian noise (AWGN) channel6 

with the embedded message being viewed as the signal and the cover message 
as the noise, (e.g., [18][13]). 

Let I(i,j) denote the brightness value of the pixel at position (i,j) of an 
image. The 2D DFT is a natural extension of the ID DFT by applying the ID 
DFT to a 2D matrix twice, and its period is given by the dimension of the input 
image (i.e., N x M), i.e., 

1      N-1M-1 
F{u,v) =  TTTTJ] ^/(M)exp-t27r(#+M> ,0 <u < N; 0 < v < M . (1) 

fc=0   1=0 

Its backward transform7 is given by 
4Recall that the effect of sampling at time interval T in time domain yields a series of repli- 

cas of the frequency spectral separated at (2n)/T apiece in the frequency domain. The Nyquist 
sampling theorem says the maximum sampling interval T is reciprocally lower-bounded by the 
frequency bandwidth W, i.e., (2-K)/T > 2W'. Let Umax denote the highest frequency index. 
We have (2it)/T = 2(umai^o) or 2{umax)(2-K/NT). Thus, umax is equal to y. The highest 
frequency (i.e., timaluo) is ^ radians/second or ^ cycles/second. 

6For a digital image, the highest frequency of one direction may differ from that of the 
other direction. Here, the two highest frequency components are assumed to be the same. 

6 

C = Wlog2(l + |r), 

where W is the bandwidth, S denotes the energy measure of the signal, and ./V denotes the 
energy measure of the noise. 

7More precisely, the backward transform should be the inverse mapping F_1. We use 
I(k,l) instead of F~1(k,l) for convenience. 



7V-1 M-l 

I(k,I)  =   Y.Y2 F("'u) expl27r(^+M> ,0 < k < N; 0 < I < M      (2) 
u=0   u=0 

EQ(1) can also be written in the matrix form, 

i - yi)MN{ui ••• ui) (3) 

where Vt and Uf denote {exp-^T^exp-'2^^), • • • ^exp-12^'^'1 >} and 

{exp~t2n(~N~\ex-p~a7r(~"~\-■■ ,exp~L2lT<'^L^i '}, respectively. Note that the 
DFT obeys the property of symmetry i.e, F(u,v) = F*(N -u,N - v)8, which 
can be seen by replacing u and v with N — u and TV - v in exp-t27r(^"+w). The 
property of symmetry is useful for plotting the result of the DFT as shown in 
the next section. The 2D DFT is a common instrument for analyzing hiding 
capacity and is presently available in our xv tool. 

2.2    Discrete Cosine Transform: DCT 

The DCT had been the major mathematical framework for image compression 
in JPEG until JPEG2000 was introduced. The DCT improves the DFT by elim- 
inating the high frequency components induced by the sharp discontinuities at 
the boundary between two consecutive periods in the time (or spatial) domain 
of a periodic signal. To represent the sharp value change, it needs non-zero 
high frequency DFT coefficients. If for compression reasons all high frequency 
components of DFT, including those generated from the sharp discontinuities, 
are deleted, such deletion will cause distortion to the original image. To elim- 
inate those undesirable high frequency components, the DCT concatenates a 
period with the mirrored image of its an adjacent period. This new period has 
twice the sample points, but no sharp value change at the boundary with its 
neighbors. Concatenation of one period and the mirror image of adjacent pe- 
riod defines an even function and hence, results in yielding an all real-valued 
transform code.9 This is a big advantage in computation! The DCT can be 
obtained from the DFT of a mirrored 2N sample sequence, where the DCT is 
the first N sample points. The commonly used form of the DCT was derived 
from a class of discrete Chebyshev polynomials [1].  The derivation of the 2D 

8F*(.,.) is the complex conjugate of F(.,.) 
9Suppose a function, g(t), whose domain is interval [0,P), is concatenated with its shifted 

mirror image, g(2P — t).   The Fourier transform of this concatenated function is given by 

(1/2P) J2P(g(t) + g(2P -1)) exp"'""«' dt, where exp(->m"o( = cos{nu0t) + {-)sin{nu0t)- It 

can be rewritten as (1/2P) (ff g(t) exp-""""' dt + f*P g(2P - t) exp-'"wof dt J . By replac- 

ing 2P-t with t in the second term, the Fourier transform becomes (1/P) J„   g(t)cos(nu>ot)dt. 



DCT code is similar to that of the DFT. The DCT code of an image brightness 
matrix I{i,j) (0<i<N,0<j< M) is given by 

S(u,v)  =  c(u,v) >►_, ^ I(i,j)cos      2N      cos      2M       , (4) 

where 0 < u < N and 0 < v < M, and c(u,v) is given by c(Q,0)=^/T/N\f\JM', 
c{u,0) = ^2/Ny/ljM, c{0,v)=^IjN^/2jM, and C(U,V)=X/2/#^7M, U,V > 

0. For each u and v, different values of cos"^ ^N 'u cos*^ ^M 'v, 0 < i < N 
and 0 < j < M, form a NxM DCT basis matrix. The DCT basis matrices are 
orthonormal. Coefficients produced from these base matrices are uncorrelated 
and hence can be processed independently. The backward DCT is shown below. 

I(hJ)  =   £ £ c(u,v)S(u,v)cos'K   2N   Ucosn   32M       . (5) 
u=0   v=0 

In JPEG, the DCT is applied to each block of 8X8 pixels from the input image, 
with the image being partitioned into a number of blocks [15]. 

2.3    Discrete Wavelet Transform: DWT 

The wavelet transform (WT) has been adopted as the standard tool in JPEG 
2000 still image compression as it produces a higher compression ratio than 
the DCT does [4]. Studies of image compression also show that the wavelet 
transform provides better frequency and time (spatial) resolution than other 
transform techniques do. 

The DFT gives an excellent description of the frequency responses of a signal, 
but no information about when (where) particular frequency components occur 
in time (space). The Short-time Fourier Transform (STFT) improves the DFT 
by breaking the signal into intervals of fixed length and applying the Fourier 
analysis to each interval. A particular frequency response that occurs only at a 
certain interval can be captured with STFT. However, fixed length intervals have 
their restrictions. Although a short fixed length interval is good for identifying 
local variation in time (space), it is inadequate to describe frequency responses 
whose cycles exceed the length of the interval. The major changes from STFT 
to WT are perhaps the selection of base functions (e.g., the sinusoidal functions 
in Fourier transform) and the windowing operation. A base function of wavelet 
transform can be any function with zero mean and finite energy (called the 
wavelet).10 The entire set of base functions are mutually orthonormal (like 
sinusoidal bases) and generated from a single base function (called the mother 
wavelet) by scaling and translation. In WT, a base function is locally applied 

10That is, (ty(t)2dt < inf and hence, a base function is in vector space L2. Because of 
the finite energy requirement, *(t) is restricted to a narrow band, which gives the wavelet its 
frequency localization capability [16]. A sine (cosine) function cannot be a base. 



to a particular area of the signal at a time. Localization is realized through 
windowing, where the size of the window, indicating resolution, unlike the fixed 
interval used in STFT, is not a constant. Only the base function whose scale 
(or cycle) is compatible with the size of the window used. As a result, base 
functions of slower cycles are used under a larger window, while base functions 
of faster cycles are used under a shorter window. 

In the case of data compression, the implementation of the DWT is similar 
to that of subband coding[16], where at each stage a coarse overall shape and 
details of the data obtained from the previous stage are derived. Encoding 
in the DWT proceeds with decomposition and downsampling. Decomposition 
separates data into frequency bands via high-pass and low-pass filtering. The 
functions of a high-pass filter are the WT base functions, while the functions 
of the low-pass filter are the complements of the base functions. Downsampling 
removes data which is not needed for future reconstruction. Decoding on the 
other hand involves up-sampling to adjust dimensionality and recombining data 
from different bands. 

Call the output from high-pass and low-pass filtering the filtered transform 
coefficients. Let h, I and <g> denote the high-pass, low-pass and the convolu- 
tion operation, respectively. Consider the case where the low-pass filter is a 
2-tap averaging operator (i.e, l(0)=l/2, l(l)=l/2) and the high-pass filter is 
a difference operator (i.e., h(0)=l/2, h(l)=-l/2 - the Haar transform). Let 
X = {xi, ■ • • ,x8}

T- The outcomes of filtering are the high-filtered coefficients 
h <g> X and the low-filtered coefficients / <g> X, i.e., 

1 T 
I® X = - [x7 +x0, x0 + xlt---,x5 +x6, x6 +x7] (6) 

1 T 
h<g>X = - [x0 - xr, xi - x0,---,x6 ~ X5, X7 - X6] (7) 

The original signal can be reconstructed from those high-filtered and low- 
filtered coefficients by, for instance, adding them one by one and dividing the 
result of addition by 2. In fact, it can be shown that reconstruction needs just 
half the number of coefficients from each set and hence, each of the two sets is 
down-sampled to a half. If downsampling D is picking up every other coefficient 
from I <8> X and h ® X, it has the form 

10 0    0 0    0 0    0 
0    0 10 0    0 0   0 
0    0 0    0 10 0   0 
0    0 0    0 0    0 10 

(8) 

The relationship between original data and the transform code is described in 
the matrix form as follows, 

Wa[X] 
DXi 
DXh 

[X] (9) 



where Wa is the DWT. 
The wavelet transform may be applied to each set of filtered transform co- 

efficients to obtain more detailed and coarser description.  For instance, after 
downsampling, we have 
Stage 1: 

1 T 
coarse :    - [x7 + #o, X\ + £2, £3 + £4, x5 + x6] (10) 

1 T 
detail :    - [XQ — £7, Xi — £2, £3 — £4, £5 — XQ] (11) 

We may continue the process recursively to get further decomposition. 
Stage 2: 

1 T 
coarse:    - [x7 + x0 + x\ + x-x, £3 + £4 + x5 + x6] (12) 

1 T 
detail :    - [x7 + XQ — X\ — £2, £3 + £4 — £5 — £ö] (13) 

Stage 3: 

1 T 
coarse :    - [x7 + x0 + £1 + £2 + £3 + £4 + £5 + £6] (14) 

1 T 
detail:    — [x7 + £0 + x\ + £2 — £3 — £4 — £5 — XQ] (15) 

8 

The coefficient matrix is 

[-(£7 + £o + £l+Z2 + £3+£4+£5 + £6),  -(£7 +£o +£1 +£2 - £3 - £4 - %5 -£e)> 
Ö o 

-(£7 + £0 - £1 - £2),   T(£3 + £4 - £5 - £6), 

-(£0-£7),   -(£l-£2),   ^(X3-X4),   ^{X5-X6)]T 

Note that the first element of the coefficient matrix is the average of all values. 
For the 2D DWT (i.e., WaXW^), the transform codes of an image are divided 
into four pieces, often labeled as {LL, HL, LH, HH}. LL corresponds to the 
coefficients resulting from twice low-pass filtering and carries the most important 
information from the original image. Its size is just one quarter of the image. 
The remaining three pieces are the detailed components. Similar to the example 
shown above, for better compression result, the high and low filters are applied 
to the four (usually, just the LL) pieces. 



3    DISCUSSION 

In this section, we show our experimental results with transform embedding, 
and discuss two cases related to robustness and detection of embedded messages. 
Embedding is based on the following steps: (1) Apply the transform algorithm to 
the cover and the embedded data, (2) select the embedding method to combine 
the two sets of coefficients, and (3) apply the inverse transform to the combined 
coefficients to produce the stego image. In watermarking, extraction of the 
embedded message usually involves the subtraction of the coefficients of the 
cover from the coefficients of the stego, whereas in steganography, extraction 
may involve the use of the pre-assigned stego key. 

3.1    Experimental Results 

To illustrate transform domain hiding, we embed an image (Waterdrop) under 
a cover image (Washington Monument), where the two images are of the same 
size. Let Fe and Fc denote the transform code of the embedded and the cover 
images, respectively. (Note that, the embedded messages may not be trans- 
formed.) The embedding formula is in general described as 

Fs(u,v) = Fc(u,v) + J(u,v) * Fe(u,v);    0<u<M,0<v <N 

where J(u, v) denotes the perceptual factor calculated for each frequency com- 
ponent [19]. In its simplistic form the J{u, v) can be either additive (e.g., J(u, v) 
= a), where a is an attenuation factor for adjusting the magnitude of embedded 
coefficients and Fs = a*Fe+Fc, or multiplicative (e.g., a*Fc(u,v)), where the 
coefficient of the cover, Fc(u,v), is involved, and Fs = Fc * (1 + a * Fe). The 
advantage of embedding in the additive form is its efficient invertibility [5] for 
extraction. Not all coefficients of the cover are used for embedding. Transform 
coefficients of low frequency components that contain the most important over- 
all information of the original image usually are excluded from being used for 
embedding. For instance, in [2], coefficients from the middle frequency (DWT) 
bands are randomly selected for embedding. In our current experiments, we set 
J(u,v) to 1 and linearly combined the two sets of coefficients, i.e., 

Fs=a*Fe + (l-a)*Fc, 

in order to ensure that pixel values obtained from the inverse transformation will 
be in the proper dynamic range. (The scaling factor is chosen to be a — 0.05.) 
Since addition in the Fourier domain results in addition in the time (spatial) 
domain, linear combination assures that image values extracted from Fs will not 
fall outside the allowed range. (On the other hand, linear combination does not 
make the most use of the transform domain, since embedding in one is basically 
equivalent to embedding in another.) 

The results of our experiments are shown in Figure 1 to Figure 6. Comparing 
the original (Figure 1) and the stego (Figure 5), perceptually the two show no 
difference. The companion figures to the images are their corresponding DFT 



matrices. Note that the coefficient at the left corner of a DFT matrix obtained 
from (1) should be the lowest frequency component (i.e., u — 0, v = 0 or the 
DC). However, because of the symmetric property of the DFT, it is custom- 
ary to display the DC component at the center, and the further away from the 
center a DFT component is, the higher is its corresponding frequency. In our 
present display, the frequency component at (u, v) is moved to a new position by 

{{Ml2 -l)-u, {N/2 -l)-v) 
((3M/2 - 1) - «, {N/2 - 1) - v) 
((M/2 - 1) - u, (3N/2 - 1) - v) 
((3M/2 - 1) - u, (3N/2 - 1) - v) 

if0<u< {M/2); 0 < v < {N/2) 
if {M/2) <u<M;0<v< (N/2) 
ifO<u<M; (N/2) <v<N 
if (M/2) <u<M; (N/2) <v<N 

To further enhance the DFT display, a logarithmic transform is applied to ad- 
just the dynamic range of coefficients and the result is normalized to be within 
the level of 0 to 255 (in order for our xv tool to display). Since the magnitude 
of the DC component is far larger than that of any other frequency component, 
the DC component is actually removed from the DFT image (seen as a black 
dot at the center). 

Figl. the cover 

:mwmm m 
Fig3. the embedded Fig4. DFT of the embedded 



Fig5. the stego Fig6. DFT of the stego 

At present, we have not yet implemented adaptive selection of transform co- 
efficients. We do not suggest embedding spatial data (i.e., pixels) of the em- 
bedded image under the frequency coefficients of the cover (i.e., Ie + Tc) due 
to the fact that the frequency coefficients usually have a much larger dynamic 
range. Hence, changes to the frequency components (due to rounding and in- 
verse transformation) can cause irremediable distortion to the embedded spatial 
data. 

Extraction is implemented by reversing the embedding steps, i.e., (F3 — (1 — 
a)Fc)/a = F'e, where ' indicates the change of values due to image processing 
attacks. The embedded image extracted from the stego (Figure 7) also appears 
to be nearly identical to the original Waterdrop image. However, the signifi- 
cant reduction in magnitude of frequency coefficients during embedding taxes 
the quality when image compression is in order. On the right-handed side of 
Figure 7 is another extracted image (Figure 8) obtained from applying JPEG 
to the stego image. The grossly smeared image shows the need of more robust 
embedding. 

mmm 

Figl. the extracted embedded image Fig8. JPEG (Quality 75%)n 

For comparison, Figures 9 & 10 show the extracted images in case the least 2 
significant bits from the spatial domain are used for embedding [10]. 

11 The quality value is expressed on the 0..100 scale recommended by Independent JPEG 
Group. It is related to the DCT quantization. 

10 



Fig9. L2SB embedding (Quality 100%)        FiglO. L2SB (Quality 75%) 

The outcome supports our observation that LSB embedding is susceptible to 
image processing attacks. 

The result of embedding with the DWT is similar to that of the DFT and 
is shown in Figures 11&12. The DWT does not provide better robustness; ro- 
bustness is not a property of transform algorithms. 

Figll. DWT coefficients FigYl. extract 

3.2    Detection 

For embedded data to be undetectable, it needs to be transparent in both the 
spatial and the transform domains. Manjunath et al. [2] proposed the method 
of embedding under the DWT coefficients, where only the coefficients in the 
middle frequency range are used. That is, in Figure 11, embedding involves 
all frequency bands except the area of the left upper corner (corresponding to 
lower frequency bands) and the right lower corner (corresponding to the higher 
frequency band). The cover and the stego images are shown in Figures 13&14 
where both images were taken from a publicly available web site [12]. The two 
show no visual significant difference. At least, they both look legitimate. How- 

11 



ever, visual transparency in the spatial domain does not imply UN-detectability. 
In fact, we can effectively show that embedded information exists in Figure 14. 
Our detection method is based on frequency domain analysis. We applied the 
DFT to both the cover and the stego images of Figure 13&14 (only on the Red 
color byte). Their DFT matrices are shown in Figure 15&16, where to highlight 
the contrast, only the most significant bit is used in the display. The image 
with embedded data shows a striking bright diamond pattern that surrounds 
the center, while the cover image (Figure 13) with no embedding has a com- 
mon radial shape. Recall that in the DFT display frequency components that 
correspond to the highest frequency are located in the corner areas, those corre- 
sponding to the lowest frequency are in the center, and coefficients on the band 
of the diamond belong to the middle frequency range. The diamond pattern is 
also seen in several stego images we have tested.12 As a result, this seemingly 
transparent embedding method fails our simple detection test. The embedding 
technique proposed in [2] is valuable if the stego image of Figure 14 is for wa- 
termarking, but not steganography. Note, watermarking was the intention of [2]. 

.Fi<7l3. cover Figl4. stego 

FiglS. DFT of cover Figl6. DFT of stego 

12The diamond shape in some images are not so clear. 
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So far the strongest result on detection was perhaps made by J. Fridrich 
at the IHW2001, where she claimed that her method can potentially detect 
messages as short as any single bit change in a JPEG image.13 Her method 
examines whether or not a 8x8 block of JPEG pixels could have been produced 
by any block of quantized DCT coefficients (also in [6]). This result is interesting 
because JPEG is frequently used. We are currently analyzing their approach 
and studying its applicability to other transform methods. 

3.3    Robustness 

To improve robustness, it may be necessary to reduce the size of embedded data 
and embed it multiple times under different parts of selected coefficients, where 
each embedding responds to a particular attack in a different way. Interesting 
work in robustness was recently reported by [11] (called cocktail) and it is one 
of few methods claimed to be very robust against variety of attacks. The basic 
observation in [11] is that most attacks will cause magnitudes of more than 50% 
of frequency coefficients to either increase or decrease. Thus, it makes sense to 
embed the data twice with one embedding handling the increase and the other 
embedding handling the decrease. As a result, one embedding is expected to 
survive with higher chances against any attack. 

Can the cocktail embedding method be applied to improve our present NRL 
L2SB[14] embedding? Unfortunately, it cannot. Recall that NRL L2SB embeds 
a piece of datum under the least 2 significant bits (so its dynamic range is from 
0 to 3) of a pixel whose position is specified by a pre-assigned stego key. The 
stego key is basically a long-term key and independent of cover images. The 
cocktail method was designed for watermarking, while NRL L2SB was used 
to demonstrate the concept of steganography. NRL L2SB is used to extract 
the embedded message, not just to verify its existence as many watermarking 
methods do. 

We have not yet found a sound method that ensures the robustness of NRL 
L2SB. In the following, we show a simplistic schemes that may be useful to 
protect the embedded data against a 2x2 low-pass averaging filtering (e.g., 

1/4    1/4 
1/4    1/4 

and a 2x2 high-pass difference filtering (e.g. 
1/4       -1/4 
-1/4    1/4 ) 

attacks.   Assume position (i,j) of the cover image / is chosen for embedding. 
Consider the following two cases. 

Case 1:   average filtering.   In the case of averaging filtering, we also embed 

13The JPEG image generation involves the following steps. For a given input image (I), 

• divide the I into a number of 8x8 blocks, 

• compute the DCT of each block to yield the DCT coefficient matrix, 

• quantize the DCT coefficients, 

• evaluate the inverse DCT of the quantized coefficient matrix, and 

• round the values to obtain the final JPEG image. 
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the same datum under the three neighbors (i-lj-1), (i-lj) and (i,j-l). The 2x2 
averaging filtering computes M<-IJ-I?+M*-I.J)+M*.J-I)+M<.J) and stores the 
result back to position (i,j), where Is(.,.) denotes the pixel value of the stego at 
(.,.). As a result, the embedded value at position (i,j) is preserved under this 
scheme. Note that any pixel value Is(k, I) in the [0,255] range can be represented 
as the summation of a multiple of 4 and a remainder, i.e., 

Is(k,l)   =  4m + r , 

where m is a value in [0,63] and r is in [0,3]. If the position (k,l) is selected for 
embedding, then r denotes the value of the embedded datum. Since each of the 
four neighbor pixels has the same r, the result of averaging the four pixel values 
will still have the form, 4m' + r, with the same r and some number m' € {0,63]. 

Case 2: difference filtering. The difference filtering, which calculates 

Is(i -l,j-l)+ Is(i,j) -I,(i-l,j)-I.<i,j-l) 

is more involved. In order to preserve the embedded value, we store an embedded 
value under not one, but two positions. Suppose the embedded value is a "2", 
which occupies the last two significant bits as 1 and 0 in order from the higher 
bit to the lower bit. We embed the 1 and the 0 in separate positions. 

For "1" embedding, we embed the value 1 under the pixel at (i,j), 0 at (i-lj), 
0 at (i,j-l) and 3 under (i-lj-1). 

For "0" embedding, we embed the value 0 at all four neighbor pixels which 
have no overlapping with those used for "1" embedding. 

This scheme will get the "1" (or "0") back at position (ij).   To extract, two 
consecutive positions are decoded together. 

The length of the stego key under this embedding scheme will increase signif- 
icantly. The length for embedding against the average filtering becomes 4 times 
its original length and the length for the case of difference filtering becomes 8 
times. Total length is 12 times of the original one. We divide the cover image 
into two parts at the ratio 1:2 with the smaller part for embedding against the 
average filtering attack and the larger one for the case of difference filtering. 
The elongated stego key will inevitably increase the detectability of embedded 
messages. We are investigating more general robust embedding schemes for 
steganography. Since in steganography the cover image is usually not available 
for extraction, robust embedding is a more challenging issue to steganography 
than to watermarking. 

4    FUTURE WORK 

Part of our future research will be on the issues of robustness and detectability 
of information hiding. We showed that a watermarked image which is perceptu- 
ally invisible in the spatial domain may fail our detectability test. Our approach 
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to detectability is based on the DFT domain analysis. We proposed a method 
for protecting data embedded under LSBs against two specific forms of filtering. 
The two methods need to be refined and expanded for more general applications. 
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